https://doi.org/10.3390/cancers16162797 ·
Journal: Cancers, 2024, №16, p.2797
Publisher: MDPI AG
Authors:
- Shauna McClelland
- Pamela J. Maxwell
- Cristina Branco
- Simon T. Barry
- Cath Eberlein
- Melissa J. LaBonte
Funder Institutional: QUB Academic Lab Start-up Fund; Grant: BBSRC CAST Studentship
Abstract
This review delves into the intricate roles of interleukin-8 (IL-8) and its receptors, CXCR1 and CXCR2, in prostate cancer (PCa), particularly in castration-resistant (CRPC) and metastatic CRPC (mCRPC). This review emphasizes the crucial role of the tumour microenvironment (TME) and inflammatory cytokines in promoting tumour progression and response to tumour cell targeting agents. IL-8, acting through C-X-C chemokine receptor type 1 (CXCR1) and type 2 (CXCR2), modulates multiple signalling pathways, enhancing the angiogenesis, proliferation, and migration of cancer cells. This review highlights the shift in PCa research focus from solely tumour cells to the non-cancer-cell components, including vascular endothelial cells, the extracellular matrix, immune cells, and the dynamic interactions within the TME. The immunosuppressive nature of the PCa TME significantly influences tumour progression and resistance to emerging therapies. Current treatment modalities, including androgen deprivation therapy and chemotherapeutics, encounter persistent resistance and are complicated by prostate cancer’s notably “immune-cold” nature, which limits immune system response to the tumour. These challenges underscore the critical need for novel approaches that both overcome resistance and enhance immune engagement within the TME. The therapeutic potential of inhibiting IL-8 signalling is explored, with studies showing enhanced sensitivity of PCa cells to treatments, including radiation and androgen receptor inhibitors. Clinical trials, such as the ACE trial, demonstrate the efficacy of combining CXCR2 inhibitors with existing treatments, offering significant benefits, especially for patients with resistant PCa. This review also addresses the challenges in targeting cytokines and chemokines, noting the complexity of the TME and the need for precision in therapeutic targeting to avoid side effects and optimize outcomes.
List of references
- American Cancer Society (2024, January 17). Key Statistics for Prostate Cancer. Available online: https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics.html#:~:text=stage%20prostate%20cancer.-,Risk%20of%20prostate%20cancer,rare%20in%20men%20under%2040.
- Culp, Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates, Eur. Urol., № 77, с. 38
https://doi.org/10.1016/j.eururo.2019.08.005 - Rawla, Epidemiology of Prostate Cancer, World J. Oncol., № 10, с. 63
https://doi.org/10.14740/wjon1191 - Dearnaley, Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial, Lancet Oncol., № 17, с. 1047
https://doi.org/10.1016/S1470-2045(16)30102-4 - Hoffman, Randomized Trial of Hypofractionated, Dose-Escalated, Intensity-Modulated Radiation Therapy (IMRT) versus Conventionally Fractionated IMRT for Localized Prostate Cancer, J. Clin. Oncol., № 36, с. 2943
https://doi.org/10.1200/JCO.2018.77.9868 - Lee, Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients with Low-Risk Prostate Cancer, J. Clin. Oncol., № 34, с. 2325
https://doi.org/10.1200/JCO.2016.67.0448 - Sandhu, Radionuclide Therapy in Prostate Cancer: From standalone to combination PSMA theranostics, J. Nucl. Med., № 62, с. 1660
https://doi.org/10.2967/jnumed.120.243295 - Ryan, Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): Final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study, Lancet Oncol., № 16, с. 152
https://doi.org/10.1016/S1470-2045(14)71205-7 - Beer, Enzalutamide in metastatic prostate cancer before chemotherapy, N. Engl. J. Med., № 371, с. 424
https://doi.org/10.1056/NEJMoa1405095 - Fizazi, Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer, N. Engl. J. Med., № 377, с. 352
https://doi.org/10.1056/NEJMoa1704174 - Dai, Androgen Signaling in Prostate Cancer, Cold Spring Harb. Perspect. Med., № 7, с. a030452
https://doi.org/10.1101/cshperspect.a030452 - Pezaro, PARP inhibitor combinations in prostate cancer, Ther. Adv. Med. Oncol., № 12, с. 1758835919897537
https://doi.org/10.1177/1758835919897537 - Sathianathen, Taxane-based chemohormonal therapy for metastatic hormone-sensitive prostate cancer: A Cochrane Review, BJU Int., № 124, с. 370
https://doi.org/10.1111/bju.14711 - Baghban, Tumor microenvironment complexity and therapeutic implications at a glance, Cell Commun. Signal., № 18, с. 59
https://doi.org/10.1186/s12964-020-0530-4 - Amit, M., Baruch, E., Nagarajan, P., Gleber-Netto, F., Rao, X., Xie, T., Akhter, S., Adewale, A., Islam, S., and Mattson, B. (Res. Sq., 2023). Inflammation induced by tumor-associated nerves promotes resistance to anti-PD-1 therapy in cancer patients and is targetable by IL-6 blockade, Res. Sq., preprints.
https://doi.org/10.21203/rs.3.rs-3161761/v1 - Armstrong, Clinical and functional characterization of CXCR1/CXCR2 biology in the relapse and radiotherapy resistance of primary PTEN-deficient prostate carcinoma, NAR Cancer, № 2, с. zcaa012
https://doi.org/10.1093/narcan/zcaa012 - Korbecki, J., Bosiacki, M., Chlubek, D., and Baranowska-Bosiacka, I. (2023). Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes. Int. J. Mol. Sci., 24.
https://doi.org/10.3390/ijms241713287 - Aalinkeel, Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells, Cancer Res., № 64, с. 5311
https://doi.org/10.1158/0008-5472.CAN-2506-2 - Wang, Stromal cell-derived small extracellular vesicles enhance radioresistance of prostate cancer cells via interleukin-8-induced autophagy, J. Extracell. Vesicles, № 12, с. e12342
https://doi.org/10.1002/jev2.12342 - Perdomo, Molecular alterations associated with prostate cancer, Cent. Eur. J. Urol., № 71, с. 168
- Holmes, Structure and functional expression of a human interleukin-8 receptor, Science, № 253, с. 1278
https://doi.org/10.1126/science.1840701 - Murphy, Cloning of complementary DNA encoding a functional human interleukin-8 receptor, Science, № 253, с. 1280
https://doi.org/10.1126/science.1891716 - Chen, L., Fan, J., Chen, H., Meng, Z., Chen, Z., Wang, P., and Liu, L. (2014). The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci. Rep., 4.
https://doi.org/10.1038/srep05911 - Singh, Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells, Breast Cancer Res., № 15, с. 210
https://doi.org/10.1186/bcr3436 - Sunaga, Clinicopathological and prognostic significance of interleukin-8 expression and its relationship to KRAS mutation in lung adenocarcinoma, Br. J. Cancer, № 110, с. 2047
https://doi.org/10.1038/bjc.2014.110 - Dahal, Megakaryocyte-Derived IL-8 Acts as a Paracrine Factor for Prostate Cancer Aggressiveness through CXCR2 Activation and Antagonistic AR Downregulation, Biomol. Ther., № 31, с. 210
https://doi.org/10.4062/biomolther.2023.005 - Cheng, Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases, Biochim. Biophys. Acta Rev. Cancer, № 1871, с. 289
https://doi.org/10.1016/j.bbcan.2019.01.005 - Seaton, Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation, Carcinogenesis, № 29, с. 1148
https://doi.org/10.1093/carcin/bgn109 - Aurilio, G., Cimadamore, A., Mazzucchelli, R., Lopez-Beltran, A., Verri, E., Scarpelli, M., Massari, F., Cheng, L., Santoni, M., and Montironi, R. (2020). Androgen Receptor Signaling Pathway in Prostate Cancer: From Genetics to Clinical Applications. Cells, 9.
https://doi.org/10.3390/cells9122653 - Wilson, C., Maxwell, P.J., Longley, D.B., Wilson, R.H., Johnston, P.G., and Waugh, D.J. (2012). Constitutive and treatment-induced CXCL8-signalling selectively modulates the efficacy of anti-metabolite therapeutics in metastatic prostate cancer. PLoS ONE, 7.
https://doi.org/10.1371/journal.pone.0036545 - Asokan, CXCL8 Signaling in the Tumor Microenvironment, Adv. Exp. Med. Biol., № 1302, с. 25
https://doi.org/10.1007/978-3-030-62658-7_3 - Saxena, Chemokines orchestrate tumor cells and the microenvironment to achieve metastatic heterogeneity, Cancer Metastasis Rev., № 40, с. 447
https://doi.org/10.1007/s10555-021-09970-6 - Singh, Chemokine signaling in cancer-stroma communications, J. Cell Commun. Signal., № 15, с. 361
https://doi.org/10.1007/s12079-021-00621-7 - Haffner, Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression, Nat. Cancer, № 2, с. 803
https://doi.org/10.1038/s43018-021-00227-3 - Armstrong, C.W., Coulter, J.A., Ong, C.W., Maxwell, P.J., Walker, S., Butterworth, K.T., Lyubomska, O., Berlingeri, S., Gallagher, R., and O’Sullivan, J.M. (2020). Targeting CXCR1 and CXCR2 to overcome radiotherapy resistance in PTEN-deficient prostate carcinoma. bioRxiv.
https://doi.org/10.1101/2020.03.16.993394 - Madan, Behind the IL-8 ball in prostate cancer, Nat. Cancer, № 2, с. 775
https://doi.org/10.1038/s43018-021-00235-3 - Fousek, Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression, Pharmacol. Ther., № 219, с. 107692
https://doi.org/10.1016/j.pharmthera.2020.107692 - Göbel, A., Dell’Endice, S., Jaschke, N., Pählig, S., Shahid, A., Hofbauer, L.C., and Rachner, T.D. (2021). The Role of Inflammation in Breast and Prostate Cancer Metastasis to Bone. Int. J. Mol. Sci., 22.
https://doi.org/10.3390/ijms22105078 - Hanahan, The hallmarks of cancer, Cell, № 100, с. 57
https://doi.org/10.1016/S0092-8674(00)81683-9 - Hanahan, Hallmarks of cancer: The next generation, Cell, № 144, с. 646
https://doi.org/10.1016/j.cell.2011.02.013 - Zhang, CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer, Oncogene, № 36, с. 2095
https://doi.org/10.1038/onc.2016.367 - Xia, GROalpha/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways and for tau hyperphosphorylation-a role in Alzheimer’s disease?, J. Neuroimmunol., № 122, с. 55
https://doi.org/10.1016/S0165-5728(01)00463-5 - Long, IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review), Int. J. Oncol., № 48, с. 5
https://doi.org/10.3892/ijo.2015.3234 - Burger, KSHV-GPCR and CXCR2 transforming capacity and angiogenic responses are mediated through a JAK2-STAT3-dependent pathway, Oncogene, № 24, с. 2067
https://doi.org/10.1038/sj.onc.1208442 - Wise, Target validation of G-protein coupled receptors, Drug Discov. Today, № 7, с. 235
https://doi.org/10.1016/S1359-6446(01)02131-6 - Ahuja, The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor, J. Biol. Chem., № 271, с. 20545
https://doi.org/10.1074/jbc.271.34.20545 - Bozic, The murine interleukin 8 type B receptor hom*ologue and its ligands. Expression and biological characterization, J. Biol. Chem., № 269, с. 29355
https://doi.org/10.1016/S0021-9258(18)43882-3 - Rovai, The murine neutrophil-chemoattractant chemokines LIX, KC, and MIP-2 have distinct induction kinetics, tissue distributions, and tissue-specific sensitivities to glucocorticoid regulation in endotoxemia, J. Leukoc. Biol., № 64, с. 494
https://doi.org/10.1002/jlb.64.4.494 - Asfaha, Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis, Gastroenterology, № 144, с. 155
https://doi.org/10.1053/j.gastro.2012.09.057 - Bizzarri, ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new therapeutic targets, Pharmacol. Ther., № 112, с. 139
https://doi.org/10.1016/j.pharmthera.2006.04.002 - Fahimi, Human CXCR1 knock-in mice infer functional expression of a murine ortholog, J. Leukoc. Biol., № 114, с. 373
https://doi.org/10.1093/jleuko/qiad085 - Centenera, M.M., Vincent, A.D., Moldovan, M., Lin, H.M., Lynn, D.J., Horvath, L.G., and Butler, L.M. (2022). Harnessing the Heterogeneity of Prostate Cancer for Target Discovery Using Patient-Derived Explants. Cancers, 14.
https://doi.org/10.3390/cancers14071708 - Karkampouna, Patient-derived xenografts and organoids model therapy response in prostate cancer, Nat. Commun., № 12, с. 1117
https://doi.org/10.1038/s41467-021-21300-6 - Palanisamy, The MD Anderson Prostate Cancer Patient-derived Xenograft Series (MDA PCa PDX) Captures the Molecular Landscape of Prostate Cancer and Facilitates Marker-driven Therapy Development, Clin. Cancer Res., № 26, с. 4933
https://doi.org/10.1158/1078-0432.CCR-20-0479 - Waseem, M., and Wang, B.D. (2024). Organoids: An Emerging Precision Medicine Model for Prostate Cancer Research. Int. J. Mol. Sci., 25.
https://doi.org/10.3390/ijms25021093 - Medina, S., Brockman, A.A., Cross, C.E., Hayes, M.J., Mobley, B.C., Mistry, A.M., Chotai, S., Weaver, K.D., Thompson, R.C., and Chambless, L.B. (2024). IL-8 Instructs Macrophage Identity in Lateral Ventricle Contacting Glioblastoma. bioRxiv.
https://doi.org/10.1101/2024.03.29.587030 - Harshman, Impact of baseline serum IL-8 on metastatic hormone-sensitive prostate cancer outcomes in the Phase 3 CHAARTED trial (E3805), Prostate, № 80, с. 1429
https://doi.org/10.1002/pros.24074 - Shang, A small-molecule antagonist of CXCR1 and CXCR2 inhibits cell proliferation, migration and invasion in melanoma via PI3K/AKT pathway, Med. Clin., № 152, с. 425
https://doi.org/10.1016/j.medcli.2018.08.006 - Guo, Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance, Nature, № 623, с. 1053
https://doi.org/10.1038/s41586-023-06696-z - Zhao, Molecular characterization and expression analysis of Japanese flounder (Paralichthys olivaceus) chemokine receptor CXCR2 in comparison with CXCR1, Dev. Comp. Immunol., № 120, с. 104047
https://doi.org/10.1016/j.dci.2021.104047 - Rani, Prostate Cancer: The Role of Inflammation and Chemokines, Am. J. Pathol., № 189, с. 2119
https://doi.org/10.1016/j.ajpath.2019.07.007 - Wei, Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance, Cell. Mol. Life Sci., № 78, с. 173
https://doi.org/10.1007/s00018-020-03581-0 - Ha, Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases, Theranostics, № 7, с. 1543
https://doi.org/10.7150/thno.15625 - Waugh, The interleukin-8 pathway in cancer, Clin. Cancer Res., № 14, с. 6735
https://doi.org/10.1158/1078-0432.CCR-07-4843 - Murphy, Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer, Clin. Cancer Res., № 11, с. 4117
https://doi.org/10.1158/1078-0432.CCR-04-1518 - Khalaf, K., Hana, D., Chou, J.T., Singh, C., Mackiewicz, A., and Kaczmarek, M. (2021). Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front. Immunol., 12.
https://doi.org/10.3389/fimmu.2021.656364 - Bergers, Tumorigenesis and the angiogenic switch, Nat. Rev. Cancer, № 3, с. 401
https://doi.org/10.1038/nrc1093 - Zhou, Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer, Cancer Res., № 66, с. 7889
https://doi.org/10.1158/0008-5472.CAN-06-0486 - Francisco, Androgen receptor in human endothelial cells, J. Endocrinol., № 224, с. R131
https://doi.org/10.1530/JOE-14-0611 - Fang, B., Lu, Y., Li, X., Wei, Y., Ye, D., Wei, G., and Zhu, Y. (2024). Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis.
https://doi.org/10.1038/s41391-024-00825-z - Dai, Immune mediators in the tumor microenvironment of prostate cancer, Chin. J. Cancer, № 36, с. 29
https://doi.org/10.1186/s40880-017-0198-3 - Mao, Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives, Mol. Cancer, № 20, с. 131
https://doi.org/10.1186/s12943-021-01428-1 - Archer, M., Dogra, N., and Kyprianou, N. (2020). Inflammation as a Driver of Prostate Cancer Metastasis and Therapeutic Resistance. Cancers, 12.
https://doi.org/10.3390/cancers12102984 - Infanger, Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche, Cancer Res., № 73, с. 7079
https://doi.org/10.1158/0008-5472.CAN-13-1355 - Liu, Cancer stem cells and their niche in cancer progression and therapy, Cancer Cell Int., № 23, с. 305
https://doi.org/10.1186/s12935-023-03130-2 - Karantanos, Prostate cancer progression after androgen deprivation therapy: Mechanisms of castrate resistance and novel therapeutic approaches, Oncogene, № 32, с. 5501
https://doi.org/10.1038/onc.2013.206 - Germann, Stem-like cells with luminal progenitor phenotype survive castration in human prostate cancer, Stem Cells, № 30, с. 1076
https://doi.org/10.1002/stem.1087 - Wang, Targeting prostate cancer stem cells for cancer therapy, Discov. Med., № 13, с. 135
- Du, IL-8 regulates the doxorubicin resistance of colorectal cancer cells via modulation of multidrug resistance 1 (MDR1), Cancer Chemother. Pharmacol., № 81, с. 1111
https://doi.org/10.1007/s00280-018-3584-x - Iwasawa, Novel subset of granulocytic MDSCs as immunosuppressive regulators and therapeutic targets in gastric cancer, Cancer Res., № 83, с. 2889
https://doi.org/10.1158/1538-7445.AM2023-2889 - Li, Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer, Signal Transduct. Target. Ther., № 6, с. 362
https://doi.org/10.1038/s41392-021-00670-9 - Gabrilovich, Myeloid-derived suppressor cells as regulators of the immune system, Nat. Rev. Immunol., № 9, с. 162
https://doi.org/10.1038/nri2506 - Garcia, Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression, Mol. Cell. Biol., № 34, с. 2017
https://doi.org/10.1128/MCB.00090-14 - Hellsten, The STAT3 inhibitor galiellalactone inhibits the generation of MDSC-like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors, Prostate, № 79, с. 1611
https://doi.org/10.1002/pros.23885 - Maxwell, Attenuating Adaptive VEGF-A and IL8 Signaling Restores Durable Tumor Control in AR Antagonist-Treated Prostate Cancers, Mol. Cancer Res., № 20, с. 841
https://doi.org/10.1158/1541-7786.MCR-21-0780 - Papanikolaou, S., Vourda, A., Syggelos, S., and Gyftopoulos, K. (2021). Cell Plasticity and Prostate Cancer: The Role of Epithelial-Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers, 13.
https://doi.org/10.3390/cancers13112795 - Henderson, Epithelial-Mesenchymal Transition (EMT) and Prostate Cancer, Adv. Exp. Med. Biol., № 1095, с. 101
https://doi.org/10.1007/978-3-319-95693-0_6 - Cheaito, EMT Markers in Locally-Advanced Prostate Cancer: Predicting Recurrence?, Front. Oncol., № 9, с. 131
https://doi.org/10.3389/fonc.2019.00131 - Wang, LncRNA UBE2R2-AS1, as prognostic marker, promotes cell proliferation and EMT in prostate cancer, Histol. Histopathol., № 38, с. 637
- Lemster, A.L., Sievers, E., Pasternack, H., Lazar-Karsten, P., Klümper, N., Sailer, V., Offermann, A., Brägelmann, J., Perner, S., and Kirfel, J. (2022). Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers, 14.
https://doi.org/10.3390/cancers14081894 - David, J.M., Dominguez, C., Hamilton, D.H., and Palena, C. (2016). The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance. Vaccines, 4.
https://doi.org/10.3390/vaccines4030022 - Torrealba, Expression of several cytokines in prostate cancer: Correlation with clinical variables of patients. Relationship with biochemical progression of the malignance, Cytokine, № 89, с. 105
https://doi.org/10.1016/j.cyto.2016.08.008 - McShane, R., Arya, S., Stewart, A.J., Caie, P.D., and Bates, M. (2021). Prognostic features of the tumour microenvironment in oesophageal adenocarcinoma. Biochim. Biophys. Acta Rev. Cancer, 1876.
https://doi.org/10.1016/j.bbcan.2021.188598 - Seebacher, N.A., Krchniakova, M., Stacy, A.E., Skoda, J., and Jansson, P.J. (2021). Tumour Microenvironment Stress Promotes the Development of Drug Resistance. Antioxidants, 10.
https://doi.org/10.3390/antiox10111801 - Lucantoni, The tumour microenvironment as an integrated framework to understand cancer biology, Cancer Lett., № 461, с. 112
https://doi.org/10.1016/j.canlet.2019.07.010 - Kiefer, Type I collagen-mediated proliferation of PC3 prostate carcinoma cell line: Implications for enhanced growth in the bone microenvironment, Matrix Biol., № 20, с. 429
https://doi.org/10.1016/S0945-053X(01)00159-7 - Henke, E., Nandigama, R., and Ergün, S. (2019). Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front. Mol. Biosci., 6.
https://doi.org/10.3389/fmolb.2019.00160 - Jiang, Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy, J. Hematol. Oncol., № 15, с. 34
https://doi.org/10.1186/s13045-022-01252-0 - Pillai, Causes, consequences, and therapy of tumors acidosis, Cancer Metastasis Rev., № 38, с. 205
https://doi.org/10.1007/s10555-019-09792-7 - Winkler, Concepts of extracellular matrix remodelling in tumour progression and metastasis, Nat. Commun., № 11, с. 5120
https://doi.org/10.1038/s41467-020-18794-x - Hirz, Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses, Nat. Commun., № 14, с. 663
https://doi.org/10.1038/s41467-023-36325-2 - Shackleton, E.G., Ali, H.Y., Khan, M., Pockley, G.A., and McArdle, S.E. (2021). Novel Combinatorial Approaches to Tackle the Immunosuppressive Microenvironment of Prostate Cancer. Cancers, 13.
https://doi.org/10.3390/cancers13051145 - Tonry, Clinical proteomics for prostate cancer: Understanding prostate cancer pathology and protein biomarkers for improved disease management, Clin. Proteom., № 17, с. 41
https://doi.org/10.1186/s12014-020-09305-7 - Rycaj, Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSA-/lo castration-resistant cells, Oncotarget, № 7, с. 14220
https://doi.org/10.18632/oncotarget.7303 - Karavitakis, Tumor focality in prostate cancer: Implications for focal therapy, Nat. Rev. Clin. Oncol., № 8, с. 48
https://doi.org/10.1038/nrclinonc.2010.190 - Baca, Punctuated evolution of prostate cancer genomes, Cell, № 153, с. 666
https://doi.org/10.1016/j.cell.2013.03.021 - Cotter, The evolving landscape of prostate cancer somatic mutations, Prostate, № 82, с. S13
https://doi.org/10.1002/pros.24353 - Yoosuf, Identification and transfer of spatial transcriptomics signatures for cancer diagnosis, Breast Cancer Res., № 22, с. 6
https://doi.org/10.1186/s13058-019-1242-9 - Wang, Y., Ma, S., and Ruzzo, W.L. (2020). Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities. Sci. Rep., 10.
https://doi.org/10.1038/s41598-020-60384-w - Siewe, N., and Friedman, A. (2022). Combination therapy for mCRPC with immune checkpoint inhibitors, ADT and vaccine: A mathematical model. PLoS ONE, 17.
https://doi.org/10.1371/journal.pone.0262453 - Al-Akhras, A., Chehade, C.H., Narang, A., and Swami, U. (2024). PARP Inhibitors in Metastatic Castration-Resistant Prostate Cancer: Unraveling the Therapeutic Landscape. Life, 14.
https://doi.org/10.3390/life14020198 - Turnham, D.J., Bullock, N., Dass, M.S., Staffurth, J.N., and Pearson, H.B. (2020). The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells, 9.
https://doi.org/10.3390/cells9112342 - Smits, The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact, Nat. Commun., № 10, с. 5251
https://doi.org/10.1038/s41467-019-13084-7 - Sfanos, Prostate cancer and inflammation: The evidence, Histopathology, № 60, с. 199
https://doi.org/10.1111/j.1365-2559.2011.04033.x - Gonzalez, Roles of the immune system in cancer: From tumor initiation to metastatic progression, Genes Dev., № 32, с. 1267
https://doi.org/10.1101/gad.314617.118 - Krueger, Tumor-infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer?, Prostate, № 79, с. 320
https://doi.org/10.1002/pros.23738 - Guo, Prostate carcinogenesis: Inflammatory storms, Nat. Rev. Cancer, № 20, с. 455
https://doi.org/10.1038/s41568-020-0267-9 - Cha, Mechanisms Controlling PD-L1 Expression in Cancer, Mol. Cell, № 76, с. 359
https://doi.org/10.1016/j.molcel.2019.09.030 - Li, Prostate cancer cells synergistically defend against CD8(+) T cells by secreting exosomal PD-L1, Cancer Med., № 12, с. 16405
https://doi.org/10.1002/cam4.6275 - Willsmore, Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action, Eur. J. Immunol., № 51, с. 544
https://doi.org/10.1002/eji.202048747 - Kim, C.W., Chon, H.J., and Kim, C. (2021). Combination Immunotherapies to Overcome Intrinsic Resistance to Checkpoint Blockade in Microsatellite Stable Colorectal Cancer. Cancers, 13.
https://doi.org/10.3390/cancers13194906 - Sena, Targeting the spectrum of immune checkpoints in prostate cancer, Expert. Rev. Clin. Pharmacol., № 14, с. 1253
https://doi.org/10.1080/17512433.2021.1949287 - Yu, Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review), Int. J. Mol. Med., № 47, с. 444
https://doi.org/10.3892/ijmm.2020.4817 - Fizazi, Final Analysis of the Ipilimumab Versus Placebo Following Radiotherapy Phase III Trial in Postdocetaxel Metastatic Castration-resistant Prostate Cancer Identifies an Excess of Long-term Survivors, Eur. Urol., № 78, с. 822
https://doi.org/10.1016/j.eururo.2020.07.032 - Aubert, N., Brunel, S., Olive, D., and Marodon, G. (2021). Blockade of HVEM for Prostate Cancer Immunotherapy in Humanized Mice. Cancers, 13.
https://doi.org/10.20944/preprints202105.0302.v2 - Czernin, Immune-Checkpoint Blockade Enhances (225)Ac-PSMA617 Efficacy in a Mouse Model of Prostate Cancer, J. Nucl. Med., № 62, с. 228
https://doi.org/10.2967/jnumed.120.246041 - Ruiz de Porras, V., Pardo, J.C., Notario, L., Etxaniz, O., and Font, A. (2021). Immune Checkpoint Inhibitors: A Promising Treatment Option for Metastatic Castration-Resistant Prostate Cancer?. Int. J. Mol. Sci., 22.
https://doi.org/10.3390/ijms22094712 - Yu, Neutrophils in cancer: Dual roles through intercellular interactions, Oncogene, № 43, с. 1163
- Jurcevic, The effect of a selective CXCR2 antagonist (AZD5069) on human blood neutrophil count and innate immune functions, Br. J. Clin. Pharmacol., № 80, с. 1324
https://doi.org/10.1111/bcp.12724 - Kumar, Hsp60 and IL-8 axis promotes apoptosis resistance in cancer, Br. J. Cancer, № 121, с. 934
https://doi.org/10.1038/s41416-019-0617-0 - Hu, Doxorubicin-Induced Cancer Cell Senescence Shows a Time Delay Effect and Is Inhibited by Epithelial-Mesenchymal Transition (EMT), Med. Sci. Monit., № 25, с. 3617
https://doi.org/10.12659/MSM.914295 - Zhang, H., Yu, Q.L., Meng, L., Huang, H., Liu, H., Zhang, N., Liu, N., Yang, J., Zhang, Y.Z., and Huang, Q. (2020). TAZ-regulated expression of IL-8 is involved in chemoresistance of hepatocellular carcinoma cells. Arch. Biochem. Biophys., 693.
https://doi.org/10.1016/j.abb.2020.108571 - Bilusic, Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors, J. Immunother. Cancer, № 7, с. 240
https://doi.org/10.1186/s40425-019-0706-x - Dhayni, Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases, Pharmacol. Ther., № 237, с. 108257
https://doi.org/10.1016/j.pharmthera.2022.108257 - Prajapati, Small molecule antagonist of CXCR2 and CXCR1 inhibits tumor growth, angiogenesis, and metastasis in pancreatic cancer, Cancer Lett., № 563, с. 216185
https://doi.org/10.1016/j.canlet.2023.216185 - Steele, CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma, Cancer Cell, № 29, с. 832
https://doi.org/10.1016/j.ccell.2016.04.014 - Jackstadt, Epithelial NOTCH Signaling Rewires the Tumor Microenvironment of Colorectal Cancer to Drive Poor-Prognosis Subtypes and Metastasis, Cancer Cell, № 36, с. 319
https://doi.org/10.1016/j.ccell.2019.08.003 - Leslie, CXCR2 inhibition enables NASH-HCC immunotherapy, Gut, № 71, с. 2093
https://doi.org/10.1136/gutjnl-2021-326259 - Adekoya, Abstract PO-134: Differential effects of CXCR1 and CXCR2 receptors on prostate tumorigenesis, Cancer Epidemiol. Biomark. Prev., № 31, с. PO-134
https://doi.org/10.1158/1538-7755.DISP21-PO-134 - Nanda, Phenotypic Plasticity—Alternate Transcriptional Programs Driving Treatment Resistant Prostate Cancer, Crit. Rev. Oncog., № 27, с. 45
https://doi.org/10.1615/CritRevOncog.2022043096 - Oudard, Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial, Lancet, № 376, с. 1147
https://doi.org/10.1016/S0140-6736(10)61389-X - Parker, Alpha emitter radium-223 and survival in metastatic prostate cancer, N. Engl. J. Med., № 369, с. 213
https://doi.org/10.1056/NEJMoa1213755 - Caffo, Survival Outcomes From a Cumulative Analysis of Worldwide Observational Studies on Sequential Use of New Agents in Metastatic Castration-Resistant Prostate Cancer, Clin. Genitourin. Cancer, № 18, с. 69
https://doi.org/10.1016/j.clgc.2019.09.010 - Lombard, Intra versus Inter Cross-resistance Determines Treatment Sequence between Taxane and AR-Targeting Therapies in Advanced Prostate Cancer, Mol. Cancer Ther., № 17, с. 2197
https://doi.org/10.1158/1535-7163.MCT-17-1269 - Beer, Randomized, Double-Blind, Phase III Trial of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients With Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer, J. Clin. Oncol., № 35, с. 40
https://doi.org/10.1200/JCO.2016.69.1584 - Trump, Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial, Urol. Oncol., № 34, с. 249
https://doi.org/10.1016/j.urolonc.2015.03.013 - Li, Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer, Sci. Transl. Med., № 11, с. eaax0428
https://doi.org/10.1126/scitranslmed.aax0428 - Culig, Interleukin-6 and prostate cancer: Current developments and unsolved questions, Mol. Cell. Endocrinol., № 462, с. 25
https://doi.org/10.1016/j.mce.2017.03.012 - Culig, Z. (2021). Response to Androgens and Androgen Receptor Antagonists in the Presence of Cytokines in Prostate Cancer. Cancers, 13.
https://doi.org/10.3390/cancers13122944 - Calcinotto, IL-23 secreted by myeloid cells drives castration-resistant prostate cancer, Nature, № 559, с. 363
https://doi.org/10.1038/s41586-018-0266-0 - Krause, Resistance to prostate cancer treatments, IUBMB Life, № 75, с. 390
https://doi.org/10.1002/iub.2665 - Debes, Mechanisms of androgen-refractory prostate cancer, N. Engl. J. Med., № 351, с. 1488
https://doi.org/10.1056/NEJMp048178 - Cai, Current therapy and drug resistance in metastatic castration-resistant prostate cancer, Drug Resist. Updat., № 68, с. 100962
https://doi.org/10.1016/j.drup.2023.100962 - Grossmann, Androgen receptor signaling in androgen-refractory prostate cancer, J. Natl. Cancer Inst., № 93, с. 1687
https://doi.org/10.1093/jnci/93.22.1687 - Ge, Epigenetic modulations and lineage plasticity in advanced prostate cancer, Ann. Oncol., № 31, с. 470
https://doi.org/10.1016/j.annonc.2020.02.002 - Wen, TCF7L1 regulates cytokine response and neuroendocrine differentiation of prostate cancer, Oncogenesis, № 10, с. 81
https://doi.org/10.1038/s41389-021-00371-6 - Meng, Z.W., Zhang, L., Cai, X.R., Wang, X., She, F.F., and Chen, Y.L. (2023). Author Correction: IL-8 is a novel prometastatic chemokine in intrahepatic cholangiocarcinoma that induces CXCR2-PI3K/AKT signaling upon CD97 activation. Sci. Rep., 13.
https://doi.org/10.1038/s41598-023-45496-3 - Deng, Overexpression of IL-8 promotes cell migration via PI3K-Akt signaling pathway and EMT in triple-negative breast cancer, Pathol. Res. Pract., № 223, с. 152824
https://doi.org/10.1016/j.prp.2020.152824 - Guo, IL-8 promotes proliferation and inhibition of apoptosis via STAT3/AKT/NF-κB pathway in prostate cancer, Mol. Med. Rep., № 16, с. 9035
https://doi.org/10.3892/mmr.2017.7747 - Wilson, Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-kappaB transcription and evasion of apoptosis, J. Pharmacol. Exp. Ther., № 327, с. 746
https://doi.org/10.1124/jpet.108.143826 - Park, Epithelial-stromal communication via CXCL1-CXCR2 interaction stimulates growth of ovarian cancer cells through p38 activation, Cell. Oncol., № 44, с. 77
https://doi.org/10.1007/s13402-020-00554-0 - Sitaru, Therapeutic inhibition of CXCR1/2: Where do we stand?, Intern. Emerg. Med., № 18, с. 1647
https://doi.org/10.1007/s11739-023-03309-5 - Xiong, Neutrophils in cancer carcinogenesis and metastasis, J. Hematol. Oncol., № 14, с. 173
https://doi.org/10.1186/s13045-021-01187-y - Hu, Decreased CXCR1 and CXCR2 expression on neutrophils in anti-neutrophil cytoplasmic autoantibody-associated vasculitides potentially increases neutrophil adhesion and impairs migration, Arthritis Res. Ther., № 13, с. R201
https://doi.org/10.1186/ar3534 - Zhong, J., Zong, S., Wang, J., Feng, M., Wang, J., Zhang, H., and Xiong, L. (2023). Role of neutrophils on cancer cells and other immune cells in the tumor microenvironment. Biochim. Biophys. Acta Mol. Cell Res., 1870.
https://doi.org/10.1016/j.bbamcr.2023.119493 - Armstrong, CXCR2 antagonist navarixin in combination with pembrolizumab in select advanced solid tumors: A phase 2 randomized trial, Investig. New Drugs, № 42, с. 145
https://doi.org/10.1007/s10637-023-01410-2
About this publication
Number of citations | 0 |
Number of works in the list of references | 166 |
Journal indexed in Scopus | Yes |
Journal indexed in Web of Science | Yes |